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Nonequilibrium Brownian Dynamics Simulations 
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Colloidal Suspensions 
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The effect of interparticle forces on shear thinning in concentrated aqueous and 
nonaqueous colloidal suspensions was studied using nonequilibrium Brownian 
dynamics. Hydrodynamic interactions among particles were neglected. Systems 
of 108 particles were studied at volume fractions ~b of 0.2 and 0.4. For the non- 
aqueous systems, shear thinning could be correlated with the gradual breakup 
of small flocs present because of the weak, attractive secondary minimum in the 
interparticle potential. At the highest shear rate for ~b = 0.4, the particles were 
organized into a hexagonally packed array of strings. For the strongly repulsive 
aqueous systems, the viscosity appeared to be a discontinuous function of the 
shear rate. For ~b =0.4, this discontinuity coincided with a transition from a 
disordered state to a lamellar structure for the suspension. 

KEY WORDS: Colloidal suspensions; viscosity; shear thinning; Brownian 
dynamics. 

1. I N T R O D U C T I O N  

Colloidal suspensions exhibit many interesting equilibrium and non- 
equilibrium properties, in equilibrium suspensions, for example, particles 
can be found in gas-, liquid-, or solidlike phases depending on temperature, 
density, and particle/medium characteristics. The rheological behavior of 
these suspensions is also very complex with non-Newtonian behavior such 
as shear thinning, shear thickening, dilatancy, and thixotropy commonly 
occurring. A recent volume reviews many aspects of the fieldJ 1~ 

This paper presents the results of nonequilibrium Brownian dynamics 
(NEBD) simulations performed to study shear thinning in simple, model 
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aqueous and nonaqueous colloidal suspensions. Shear thinning is simply 
the decrease in the apparent viscosity of the suspension with increasing 
shear rate. Although there have been numerous investigations of the shear 
viscosity of molecular fluids using nonequilibrium molecular dynamics 
(NEMD) techniques, there are only a few computer simulation studies 
directly concerned with the shear rate dependence of the viscosity of 
colloidal suspensions. Using NEMD techniques, Evans and Watts (2! found 
modest shear thinning and dilatancy for the screened Coulomb potential 
often used to model lyophobic suspensions. Using Stokesian dynamics 
simulations, Brady and Bossis (3 5) have extensively investigated the effects 
of hydrodynamic interactions on the viscosity of monolayer suspensions. 
Hydrodynamic interactions alone produce no shear thinning, but do result 
in modest shear thickening at higher shear rates when either strong 
repulsive forces or Brownian motion are included in the simulations. With 
Brownian motion included, shear thinning is also found. Woodcock ~" has 
shown that with appropriate choices of time and length scales, NEMD 
results for soft spheres (r f2 potential) agreed well with experimental 
measurements of shear thinning for two different nonaqueous mono- 
disperse suspensions. Woodcock ~6) has also identified an interesting 
transition between amorphous and layered phases in the viscosity versus 
shear rate curve for the soft-sphere system. Heyes ~7'~j has reported ordered 
structure formation and shear thinning at several volume fractions in 
NEBD simulations of the soft-sphere (r ,2) system. Finally, D0i and 
Chen (9~ have recently simulated sheared aggregating colloids using a sticky 
sphere model with deterministic particle motion governed by hydro- 
dynamics. Their 2D simulations neglected hydrodynamic interactions and 
qualitatively reproduced key theological features observed experimentally. 

While the NEMD results are interesting and instructive, the NEMD 
technique does not strictly represent the dynamics of colloidal particles in 
a suspension, nor is the soft-sphere potential a realistic potential for 
colloidal particles, i,e., derivable from the physics of interacting colloidal 
particles. Also, while the monolayer and 2D simulations are valuabte and 
interesting, their direct applicability to three-dimensional systems is not yet 
strongly established. The only investigations of 3D colloidal suspension 
viscosity using Brownian simulation methods known to me are those of 
Heyes (v's) and, my own preliminary study. (1~ Given this background, it 
seems reasonable to ask what effect the type of colloidal interparticle 
potential has on the magnitude of the shear viscosity and on its shear rate 
dependence. This question motivates the present work. Previous work 
indicates that there should be significant effectsJ 1~ 
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2. S I M U L A T I O N  M E T H O D O L O G Y  

The simulations were performed using the Brownian dynamics algo- 
rithm originally devised by Ermak and McCammon (12~ and Fixman ~131 
with a shear flow term added. (~~ Periodic boundary conditions and the 
coordinate space version (3 5~ of the homogeneous shear conditions intro- 
duced by Lees and Edwards r were used to simulate shearing of an 
infinite system with continuous flow fields across cell boundaries. A simple 
shear flow in the x direction was used; the imposed velocity flow field 
acting on a particle with a given y coordinate was given by ux=~y, 
where ~ is the shear rate (sec 1). 

The main focus of this study was the effect of interparticle colloidal 
forces on shear thinning, and hydrodynamic interactions among particles 
were neglected. Systems of 108 spherical particles of diameter d =  1.2 ~tm 
were simulated at two volume fractions (~b=0.2,0.4). Pair potentials 
appropriate for particles in aqueous and nonaqueous media were used. The 
pair potential for the nonaqueous system was the sum of an attractive 
interaction due to van der Waals forces ~17) uA and a steeply repulsive inter- 
action due to polymeric steric repulsion ~81 us: 

u A ( r ) = - A { ( d / r ) 2 - [ l - ( r / d )  2 ] ~+21n[l - (d /r )2]} /12  (I) 

us(r ) = kTS(2R o + rj(R o - r) 2 (2} 

Here, r is the distance between particle centers, and Ro (=d+2~5) is the 
range of the steric repulsive potential, where 6(0.02/tm) is the thickness of 
the adsorbed polymer layer. Also, k is the Boltzmann constant, T (293 K) 
is the absolute temperature, A (5.0 • 10 20 j )  is the Hamaker constant, and 
S (5.82 • 1016 cm 3) is a composite parameter that controls the strength of 
the steric repulsion. The value for S is based on parameters "~ for 
poly(12-hydroxystearic acid) chains in a dodecane solvent, with a concen- 
tration of 0.013 g/cm 3 of polymer segments per unit volume of adsorbed 
layer. Although the repulsive barrier of this potential is quite high (154 k T  
at r/d= 1.0055), to ensure that trapping in the primary minimum, i.e., 
irreversible coagulation, could not occur, the absolute value of the force 
derivable from Eqs. (1) and (2) was used for r/d< 1.0055. 

For the aqueous systems, only the highly dominant repulsive potential 
due to the overlap of electrical double layers was retained. The range of 
these pair interactions is characterized by the familiar Debye screening 
length x-1. The specific form used was that recommended by Verwey and 
Overbeek ~2~ for particles interacting with constant surface potential in 
electrolytes of high ionic strength, xd~> 3: 

u~(r) = n~k~ ln{1 +exp[  - K ( r -  d)] } (3) 

822/62/5-6-23 
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where e (7.08 x 10-~o F/m) is the aqueous electrical permittivity, and ff(~ 
(0.06 V) is the electrical potential at the particle surface. Simulations with 
this potential were run at two electrolyte concentrations (10 4 and 
10 -6 mole/din 3) giving values for xd of 39.4 and 3.94, respectively. 

The average stress due to interacting particles was computed from the 
formula 

axy= - V  ' ( ~ , ~  y~jF~ij) (4) 
i > j  

where E~ is the x component of the force between particles i and ./, V is the 
system volume, and ( . )  denotes a time average. The increment in viscosily 
due to the interparticle stress is obtained as Aq=cr,,./r The apparenl 
viscosity of the suspension differs from At/by the viscosity of the pure sus- 
pending fluid, r/0 (10 3 Pa.sec), and another additive term that, with the 
neglect of hydrodynamic interactions, depends only on ~b. The pair correla- 
tion function g(r) was computed by counting pairs in intervals of width 
3r = d/40. Although structural deformation of colloidal suspensions occurs 
under the influence of shear, giving rise to an angular dependence in 
g(r), (22~ only spherically averaged values for g were computed in order to 
reduce the computational effort. 

The systems were studied over shear rates of 5-400 sec J, thus varying 
the influence of Brownian motion and convective flow due to shear on the 
particle dynamics. The Peclet number Pe provides a measure of the relative 
importance of these two effects, since it is a ratio of characteristic times for 
diffusive and convective displacements of particles. Here, Pe is defined as 
6rtrloa3~/kT, where a = d/2, and it numerically equals r for the values of r/o, 
d, and T employed here. 

Generally, runs at a given shear rate were begun using the particle 
coordinates from the end of a run at a different, but usually nearby, shear 
rate. Typically 10,000-20,000 time steps were then used to bring the system 
to a steady state at the new shear rate before averaging was begun. For the 
first run with each system, the particles were placed on the sites of an fcc 
lattice. Without shear each of the two strongly repulsive aqueous systems 
(q~ = 0.4 and ~b = 0.2 with xd= 3.94) maintained a broadened fcc structure 
over long simulation runs. Application of shear to these systems effectively 
produced shear-induced melting. The nonaqueous systems were disordered 
at equilibrium. 

3. RESULTS 

The average viscosity increments zlr/are plotted versus shear rate ~ in 
Fig. 1. The results are grouped by volume fraction. Conditions for each run 
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Fig. I. Shear rate dependence of the relative viscosity increment. Aqueous suspensions: 
(I l) h-d=39.4; ( �9  xd=3.94; (&) ~:d=39.4; Nonaqueous suspensions: ( 0 )  A/kT= 12.4; 
(11) A/kT= 12.4; (~ ')  A/kT=O. The lines are least-squares fits to the equation z l r / ~ - P ;  
values for p are for the indicated ranges of shear rates: ([ I) 0.77, 5-34 sec 1; 0.75, 36-200 sec t. 
1~,)0.94, 5 60sec i, 1.34, 55-400sec i; (~_)0.53, I0 I(X)sec i; (O)0.61,  10200see 1. 
~'111,~ 0.77, 10400scc ~; (~ ')  0.72, 20- 100see J. 

are summarized in Table I. The viscosity increment displays an inverse 
power law dependence on "~, At/oc ~ P. The values for p are noted in the 
caption to Fig. 1; they are significantly larger than those reported by 
Heyes (7'8) for the soft-sphere system. This supports the notion that the 
nature of the intcrparticlc force has an appreciable influence on the degree 
of shear thinning. 

The most obvious feature in plot is the apparent discontinuity in 
Aq vs. i~ for each of the strongly interacting aqueous systems. ! investigated 
the case with ~ = 0.4 more thoroughly and will focus on it. For this system, 
the discontinuity occurs for 34 < Pe < 36. For Pe ~< 34 the system exhibited 
very large fluctuations in the stress as seen in Fig. 2, where values of At/, 
averaged over successive intervals of ('~ At) ~ steps, are plotted versus time. 
The high fluctuation level in the low-shear-rate "trajectories" stands in 
sharp contrast to the relatively quiet behavior of the system at Pe ~> 36. We 
should note that the runs at Pe = 34 and 36 were each started (with no 
preliminary equilibration) with the same set of particle coordinates taken 
from the end of the run at Pe = 40. This makes the disparity in appearance 
even more striking. The run at Pe = 32 was begun with coordinates from 
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Fig. 2. Time dependence of the relative viscosity increment for concentrated aqueous suspen- 
sions (~b = 0.4, xd = 39.4) at several shear rates. The curve is generated by dividing the run into 
intervals of l/(~,dt) steps and connecting the average values for successive intervals with 
straight-line segments. 

a Pe = 30 state, and it shows definite signs of bistability. In contrast, the 
run at Pe = 30 (not shown), which started with Pe = 25 coordinates, was 
also characterized by large fluctuations, but it showed no long-lived excur- 
sions below zlr//r/0=2.5, as did its offshoot. A long run at P e =  33.3 
(not shown), which started with Pe = 20 coordinates, also showed signs of 
bistability. 

The bistable nature of the system for 32 ~< Pe ~< 34 is illustrated in 
Fig. 3. These snapshots show entire sets of particle coordinates, selected at 
specific times, projected onto the yz plane. Thc shear flow is directed into 
the page, and the vclocity gradient is in the y direction. Figure 3a shows a 
configuration taken from the low-stress region for Pe = 32 after 320,000 
steps, and Fig. 3b shows the projected particle configuration at the end of 
the P e = 3 4  run, also a low stress state. The lamellar structure of the 
suspension is evident in these two shots. In contrast, Fig. 3c shows a disor- 
dered particle configuration for a high-stress state after 80,000 steps at 
Pe = 34. 

Despite the recurring presence of the lower-stress lamellar states, the 
overall average value of the stress is dominated by the disordered states. 
This is reflected in the values plotted in Fig. 1 and listed in Table I, which 
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Fig. 3. Snapshots  of  particle configurations projected onto  the plane normal  to the flow for 
aqueous  suspensions  with 4 = 0.4, x d =  39.4, at several shear rates. Each symbol  locates the 
center of  a particle. Axis d imens ions  are scaled by the particle diameter. Shear rates (sec ~): 
(a) 32, (b)  34, (c) 34, (d)  36. 

were obtained by averaging over the entire run rather than by separately 
averaging over the high- and low-stress regions. I based this procedure on 
the argument that the real time spent by the system in one state or the 
other (~< 1 sec) was short compared to the time in which macroscopic 
measurements of viscosity could generally be made. Thus, the measurement 
would also average over fluctuations. 

Figure 3d shows the stable lamellar structure found for the Pe = 36 
run that began with P e = 4 0  coordinates. To check the stability of the 
system at Pe = 36, a second run of 120,000 steps was made starting with 
the end configuration of the Pe = 34 run. The results were very similar to 
those of the earlier run. The stress history showed the same low level of 
fluctuation, although the average value of At/was about 20% higher. The 
weighted average of the two runs was used in Fig. 1. On the basis of these 
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two runs, the stability of the system at Pe = 36 seems to be independent of 
the direction used to reach it. 

The lamellar structure illustrated in Fig. 3 is stable for all shear rates 
from 36 to 400 sec-1. It is interesting that, in each lamellar phase I obser- 
ved, two of the layers are further organized into strings of particles along 
the fluid streamlines. The string layers occur in pairs with a triangular 
ordering of the strings. The particles in each layer (string or regular) are 
packed in distorted planar hexagonal arrays (with occasional defects). The 
hexagonal pattern of the string layers is stretched slightly in the flow direc- 
tion while the deformation of the other layers is equivalent to about a 12 ~ 
in-plane skewing of the string layer pattern away from the flow axis. A 
given layer could be skewed either positively or negatively. 

These interesting structural changes do not show up very prominently 
in the spherically-averaged pair correlation functions. Figure 4 shows g(r) 
for Pe = 36 and g(r) + 0.5 for Pe = 34. The inset figure shows the difference 
in g(r) for several pairs of shear rates. The very small differences for 
Pe = (30, 34) and (36, 40) are typical. Generally, the effect of increasing 
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Fig. 4. Spherically-averaged pair correlation functions for aqueous  suspension with ~ = 0.4, 
~cd= 39.4 at shear rates of 34 and 36 sec ~. Fo r  34 sec ~, g ( r )  is offset by 0.5 for clarity. Inset 
shows the differences between g ( r )  at different shear  rates. 
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shear rate is to shove particles slightly closer together on average, thereby 
producing a higher average stress. The transition to the lamellar phase 
results in a slight increase in the average nearest neighbor separation, as 
seen in the inset figure for g(36 sec i ) _  g(34 sec i), and this leads to a 
lower stress. The small changes in g(r) at larger r do not contribute to the 
average stress, but are still indicative of the change in structure. These 
features are present for all ~ out to 400 sec I. Figure 5 compares g(r) at 
Pe = 10 and 200. In this case, the effect of shear on the nearest neighbor 
separation is quite evident. The inset to Fig. 5 compares g(r) at Pe = i0 
with g(r) for a "quenched" suspension obtained by allowing a particle con- 
figuration characteristic of the Pe = 10 state to reequilibrate with no shear 
rate applied. The increase in the nearest neighbor distance of the "crystal- 
lized" suspension is evident. Judging by the locations of the peaks relative 
to the nearest neighbor peak, the static structure corresponds to an imper- 
fect hcp lattice. 

Two aqueous suspensions were studied with ~ = 0 . 2  primarily to 
simulate the secondary electroviscous effect, t1.~ To do this, the ionic 

~11 , ,  6 I 0,s 1 
6 I![I g~r) 5 . I . . . .  10,s I 

I!11 ' 
5 /Jil 3;. A 

I 2~. 
4 1 I . . . . .  i - /  _ 

I ~ ~.2 1., ~.6~i.8' Z o z 2 ' z , " i 6  
3 II  / I  r/d " 

2 J! \\ ~ ~oo,,I --. | 

'lJ  2 0 . ~ ~ ~ ' I ~ l ~ .L--.--, J ~ 
.0 1.2 i .4 1.6 1.8 2.0 2.2 2.4 2 .6  

r/d 

Fig. 5. Spherically-averaged pair correlation functions for aqueous suspension with 4~=0,4, 
~:d= 39.4 at high and low shear rates. Inset compares g(r) for low shear rate with g(r) for the 
same suspension after equilibrating at zero shear rate. 
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strength of the suspending fluid was changed from 10-4 to 10-6 mole/din 3. 
The reduction of ionic strength results in a tenfold jump in the Debye 
length, increasing the range of the repulsive force, and making the sus- 
pended particles interact more strongly. The effect of this is to significantly 
increase the suspension viscosity. The simulations qualitatively reproduce 
this effect, as Fig. 1 shows. Only two runs were made at the higher ionic 
strength, but these were sufficient for the comparison. The simulation 
results for Aq/qo of the low-ionic-strength system show a discontinuity 
similar to that of the more concentrated suspension. To explore this 
behavior, two series of runs were made, one with decreasing shear rate and 
the other with increasing shear rate. In contrast to the results at ~b = 0.4, in 
this case it was possible to find regions of shear rate where the high and 
low branches of the 3rl/qo curves overlapped, although this may be due to 
insufficient run time for the cases on the lower branch. The entry at 
,) = 55 sec-  ~ in Table I was the last "stable" state in the sequence of runs 
at decreasing shear rate. In the next run (result not plotted in Fig. 1 or 
listed in Table I) at ~ = 50 sec - J, Aq/qo slowly approached the upper curve, 
but the run was terminated after 160,000 steps before completing the 
transition. On the upper branch, with increasing shear rate, the last stable 
state was at p = 60 sec ~ for a run of 240,000 steps. Subsequent runs at 
~ = 67 and 65 sec ~ resulted in rapid transitions to the lower branch. (To 
reduce confusion, these results have also been omitted from Fig. I and 
Table I.) These transients seem to resemble those described by Woodcock. t6~ 
In view of this shear thinning behavior, it would be surprising if this 
suspension failed to have ordered structures. In a cursory check of two 
states, I found ordered structures on each branch. On the upper branch at 
Pe = 60, one yz projection revealed a lamellar structure with layers slightly 
tilted with respect to the xz shear planes. At Pe = 70 on the lower branch, 
a lameUar structure resembling those in Fig. 3 was present. 

Let us now consider the results for the nonaqueous suspensions, which 
are structurally very different from the aqueous suspensions. The attractive 
van der Waals force plays a major role here because of the very short range 
(1.033d) of the steric repulsive potential. At equilibrium, these suspensions 
are weakly aggregated into flocs with little long-range order. This is due to 
the weak, attractive secondary minimum (depth ~_ 10kT) in the interpar- 
ticle potential. The attractive tail of this potential is nonzero out to about 
l.ld. Figure 6 shows g(r) at Pe =400, 2 + g(r) at Pe = 100, and 4 + g(r) at 
Pe = 10o For each of these spherically averaged pair correlation functions, 
there is a strong, localized peak at r = 1.05d due to the attractive force. The 
inset shows what happens to g(r) at Pe = 100 when the attractive force is 
shut off (A = 0): The nearest neighbor peak drops, broadens considerably, 
and the maximum moves outside of the range of the remaining repulsive 
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Fig. 6. Spherically-averaged pair correlation functions for nonaqueous suspensions For 
~b =0.4 at three different shear rates. For 100 and 10 sec J, g(r) is offset by 2.0 and 4.0, respec- 
tively, for clarity. Inset shows the effect on g(r) of turning off the attractive potential, 

potential. The number of nearest neighbors between 1.013d and !.088d also 
drops from 4.7 to 3.3. By holding particles closer together, the attractive 
force has a significant effect on the viscosity of the suspension. This can be 
seen in Fig. 1 by comparing the results with (A/kT= 12.4) and without 
(A = 0) the attractive force for $ = 0.4. 

Increasing the shear rate also has interesting effects on the structure of 
these suspensions. The first effect is the steady breakup of the small flocs 
formed because of the attractive force. At equilibrium the average number 
of nearest neighbors (1.013 < r/d< 1.088) is 6.3. With increasing shear rate 
this number steadily declines: At P c =  10, 20, 50, 100, 200, and 400, the 
respective numbers of nearest neighbors are 6.0, 5.5, 5.1, 4.7, 4.4, and 4.3 
for ~b=0.4, and 5.1, 4.4, 3.9, 2.8, 2.2, and 1.9 for ~=0.2.  In contrast, for 
~b =0.4 with no attractive force present, the number of nearest neighbors 
between 1.013d and 1.088d remains essentially constant at 3.3 between 
Pe = 20 and 100. 

A second effect of increasing shear rate is the reorganization of the 
particles into strings oriented along the fluid streamlines. This is illustrated 
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Fig. 7. Snapshots of particle configurations projected onto the plane normal  to the flow for 
a nonaqueous suspension with ~b = 0.4 at shear rates of (a) 10 and (b) 400 see-~. Each symbol 
locates the center of a particle. Axis dimensions are scaled by the particle diameter. 

in Fig. 7 by the two snapshots of particle configurations at ~b = 0.4. As in 
Fig. 3, these shots are projections of the centers of all particles onto yz 
plane. Figure 7a shows a disordered configuration that is typical at 
Pe = 10, while Fig. 7b reveals the dramatic reorganization of the particles 
into the hexagonally packed array of strings. A similar phenomenon has 
been found previously by Heyes (?'SJ for the colloidal soft-sphere system. 
This structural reorganization accounts for the failure, in Fig. 1, of the 
simulation viscosity at Pe=400 (~b=0.4) to lie on the same curve as 
the lower shear rate points. The apparent discrepancy is explained by the 
reduction in stress due to the structural change. At Pe=200  a slight 
tendency to form strings was noted, but the suspension was largely disor- 
dered, and g(r) was very similar to g(r) at Pe = 100 (Fig. 6). At Pe =400, 
g(r) has developed some new characteristics indicative of the string phase, 
although the changes are not very dramatic. 

Without the attractive force, string formation seems to be somewhat 
more favored. A snapshot at Pe = 100 of the purely repulsive nonaqueous 
suspension revealed one group of strings, several isolated strings, some 
partially layered sections, and disordered regions. A snapshot of the less 
concentrated (~b = 0.2) nonaqueous suspension at Pe = 400 showed it to be 
largely disordered, although a few strings were present. 

4. C O N C L U S I O N S  

These simulations provide evidence for the importance of the interpar- 
ticle potential in determining the behavior of sheared, simple colloidal 
suspensions, at least on a computer. The magnitude and shear rate 
dependence of the viscosity were found to depend on the type and strength 
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of the potential used. The simulations revealed many interesting features, 
such as the lamellar and string phases and discontinuous or abrupt 
shear thinning due to a structural transition, that have analogues in 
earlier NEMD simulations 16'23'241 and recent NEBD simulationsJ 7'~ These 
phenomena will undoubtedly provide many opportunities for future 
research. 

However, recent work by Evans and Morriss ~2~ regarding the 
influence of thermostatting on NEMD simulation results provides a note of 
caution regarding the interpretation and applicability of simulation results 
to real systems. Although, as Heyes 18~ has noted, NEBD simulations do not 
require thermostatting and the shear flows for colloidal fluids are low- 
Reynolds-number flows, we should still be conservative in our evaluation 
of these types of results until more is known about the effects of system 
size, boundary conditions, and simulation algorithms on the results. For 
example, computations currently in progress r for 256-particle systems 
tentatively suggest that the high-stress (low-Pe) branches of the shear 
thinning curves for the aqueous suspensions reported here may be only a 
metastable state in the larger system or may occur only at lower shear rates 
than so far studied. 

Finally, one may question whether the inclusion of hydrodynamic 
interactions (HI) would affect the results reported here. HI were neglected, 
not out of any sense that they were unimportant, but solely for practical 
reasons. Their inclusion greatly complicates the algorithm for computing 
particle trajectories and necessitates a major increase in cpu time. Since I 
do not know of any 3D simulations of a sheared colloidal suspension with 
HI, I offer some remarks based on recent results for monolayer suspensions 
with HI. ~3 5) 

In these simulations, Bossis and Brady found qualitatively similar 
shear thinning behavior for a system of hard spheres and for a moderately 
repulsive screened Coulomb system with, at most, O(1) differences in the 
relative viscosities for the two systems. (4) The contribution of HI to the 
relative viscosity was itself found to be of O(1), and it increased rather 
slowly with increasing Peclet number for Pe > 1.14~5) The principal con- 
tribution to the hydrodynamic stress arose from configurations in which 
particles were nearly touching, as seen from g(r) for the hard-sphere 
system. (sl The aqueous repulsive potentials used here prevent such small 
interparticle distances from occurring, so we might expect the magnitude of 
the hydrodynamic stress to be reduced somewhat from the values found for 
hard spheres. Because of the much shorter range of the nonaqueous poten- 
tial, particles approach each other much more closely than in the aqueous 
systems, although still not as closely as in the hard sphere system; We 
might therefore expect a somewhat larger [but still O(1)] contribution to 
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the viscosity from HI for the nonaqueous system. It is also possible that the 
long range of the HI could promote structural ordering at lower shear rates 
and thus indirectly influence the viscosity by changing the interparticle 
force contribution to the average stress, Eq. (4). 
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